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Brief introduction  

This book introduces the basic principles and implementation process of deep learning in a simple way, and 
uses python's numpy library to build its own deep learning library from scratch instead of using existing deep 
learning libraries. On the basis of introducing basic knowledge of Python programming, calculus, and probability 
statistics, the core basic knowledge of deep learning such as regression model, neural network, convolutional 
neural network, recurrent neural network, and generative network is introduced in sequence according to the 
development of deep learning. While analyzing the principle in a simple way, it provides a detailed code 
implementation process. It is like not teaching you how to use weapons and mobile phones, but teaching you 
how to make weapons and mobile phones by yourself. This book is not a tutorial on the use of existing deep 
learning libraries, but an analysis of how to develop deep learning libraries from 0. This method of combining 
the principle from 0 with code implementation can enable readers to better understand the basic principles of 
deep learning and the design ideas of popular deep learning libraries. 

Preface  

Since the invention of computers, it has been the goal of computer scientists to make machines have human-like 
intelligence. Since the concept of "artificial intelligence" was proposed in 1956, artificial intelligence research has 
experienced many ups and downs from peak to trough, trough to peak In the development process of AI, from 
rule-based reasoning based on mathematical logic to state-space search reasoning, from expert systems to 
statistical learning, from crowd intelligence algorithms to machine learning, from neural networks to support 
vector machines, different artificial intelligence technologies used to lead the way.

In the past 6 years, deep learning using deep neural networks has been brilliant and advanced by leaps and 
bounds. Successful applications of deep learning such as AlphaGo defeating the human Go champion, 
automatic driving, machine translation, speech recognition, and deep face changing continue to attract people's 
attention. As a branch of machine learning, deep learning brings traditional neural network technology back to 
life, and has established itself as the overlord of modern artificial intelligence among all artificial intelligence 
technologies. status.

Deep learning has no complex and esoteric theories. In principle, it is still a traditional neural network, that is, 
some simple neuron functions are combined into a complex function and a simple gradient descent method is 
used to learn the model in the neural network based on actual sample data. parameter. Its success is mainly 
attributed to computer hardware, especially graphics processors GPUs with increasingly powerful parallel 
computing performance and more and more big data.

The future society will be a society of artificial intelligence. Artificial intelligence will be everywhere. Many jobs 
will be replaced by artificial intelligence. course.

With the help of some deep learning platforms such as tensorflow, pytorch, and caffe, a primary school student 
can easily use the deep learning library to do various applications such as face recognition and speech 
recognition. What he does is to directly call the APIs of these platforms to define the model of the deep neural 
network. Structure and tune training parameters. These platforms make deep learning very easy, make deep 
learning enter the homes of ordinary people, and artificial intelligence is no longer mysterious. From universities 
to enterprises, people from all walks of life are using deep learning to carry out various research and 
applications.

Like any technology, only by thoroughly understanding the principles behind the technology can the technology 
be better applied. There are a large number of scattered articles on the Internet explaining the principles of 
deep learning, and there are also some deep learning courses and tutorials. Books are still an important way to 
learn systematically. The written deep learning books are mainly divided into several categories: one is books 
that focus on mathematical theory for experts or professional researchers. These books, like academic papers, 
are difficult for readers to understand. These books lack in-depth analysis of the principles and code 
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implementation, and readers may still not know how to implement them even if they work hard to understand 
the principles. The other category is tool books, which mainly introduce how to use various deep learning 
platforms, with very little explanation of the principles, making readers unable to understand the principles 
behind the code, and can only follow the gourd. There are also some books that are just popular books, and 
they have a taste of every technology, and the principles and codes are often superficial. There are also very few 
books that introduce the principles and also have code implementations, and avoid the derivation of 
mathematical formulas as much as possible.

The author believes that platform tutorial books are time-sensitive, and the publication cycle of the book is 
usually as long as one year, and the interface of the platform may have undergone some changes or even major 
changes. For the changing platform, such books are almost worthless . Principle books should be easy to 
understand, try to avoid complex and esoteric mathematics, but completely abandon the classic advanced 
mathematics developed by mathematicians for thousands of years, and using elementary school mathematics 
to describe functions for derivation is not suitable for readers with advanced mathematics knowledge. Not an 
optimal choice. However, there is a special lack of easy-to-understand books on the market that introduce the 
principles and how to implement deep learning from the bottom instead of using deep learning libraries.

In order to take care of readers who are difficult in mathematics, the first chapter of this book not only 
introduces the necessary knowledge of python programming, but also introduces some necessary knowledge of 
calculus and probability as popularly as possible. On this basis, this book transitions from the simplest 
regression model to the neural network model from the shallower to the deeper, and uses the method from 
problem to concept to explain the basic concepts and principles in an easy-to-understand manner. Avoiding 
long speeches and avoiding "treasure words like gold", use simple examples and concise and popular language 
to analyze the core principles of models and algorithms. On the basis of understanding the principle, further use 
python's numpy library to implement the code from the bottom layer, so that readers can be enlightened on the 
principle and implementation. Through reading this book, readers can follow step by step to build a deep 
learning library from 0 without any deep learning platform. Finally, as a comparison, the use of the deep 
learning platform Pytorch is introduced, so that readers can easily learn to use this deep learning platform, 
which will help readers understand the design ideas of these platforms more deeply, so as to better grasp and 
use these deep learning platforms. Learning platform.

This book is suitable not only for beginners without any deep learning knowledge, but also for practitioners who 
have experience in using deep learning libraries and want to understand its underlying implementation 
principles. This book is especially suitable as a deep learning textbook for colleges and universities.

Relevant resources of the book (including algorithm codes) can be found on the author's website 
https://hwdong-net.github.io.

The English version of this book is translated using Google Translate on the basis of the Chinese version. We will 
continue to improve the quality of the translation in the future, and we hope readers can help me correct errors. 

My email: hwdong.cn@gmail.com 

eBook link (English Version):  https://leanpub.com/dle/  

eBook link (ChineseVersion): https://leanpub.com/dl_0

eBook link (Japanese): https://leanpub.com/dl_jp

eBook link (Traditional Chinese): https://leanpub.com/dl_tw
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Chapter 2 Gradient descent method  
The core task of deep learning is to train a function model through sample data, or to find an optimal function to 
represent or describe these sample data. Solving the best function model comes down to a mathematical 
optimization problem, more precisely, the problem of finding the extreme value of a certain loss function. In 
deep learning, the gradient descent method is used to solve this extreme value problem or solve the model 
parameters.

This chapter introduces the theoretical basis, algorithm principle and code implementation of the gradient 
descent algorithm starting from the necessary conditions for the extreme value of the function, and introduces 
different optimization strategies for updating the solution variables (parameters) in the gradient descent 
method.

2.1 Necessary conditions for function extremum  
The function  obtains the Minimal value at a certain point : it means that there is a certain positive 
number , so that for the interval  each x satisfies . This  is called the Minimal 
value point of the function, and  is called the Minimal value of the function.

The function  obtains the maximal value at a certain point : it means that there is a certain positive 
number , so that for the interval  each x satisfies .  is called the maximal 
value point of the function, and  is called the maximal value of the function.

The minimum value and maximum value are collectively referred to as extreme value, and the minimum value 
point and maximum value point are collectively referred to as extreme value point.

If all x in the domain of the function  satisfy , then  is called the minimum point of the 
function, and  is called the minimum value of the function.

If all x in the domain of the function  satisfy , then  is called the maximum point of the 
function, and  is called the maximum value of the function.

That is, the minimum value is a minimum value of a global range, and the maximum value is a maximum value 
of a global range. The minimum and maximum values   are collectively referred to as Most Value, and the 
minimum and maximum points are collectively referred to as Most Value Points.

Necessary conditions for function extremum: If  is the extreme point of the function , and the 
function is derivable at , then there must be , that is, the derivative value at the extreme point 
must be 0 .

For example, the previous function  obtains the minimum value at  (of course it is also a 
minimum value) and can be derived, so at  its derivative value  must be 0.

This proposition is easy to prove. If  is the extreme point of the function , there is an interval 
 that satisfies , so , while:

When x tends to  from the left and right sides,  is negative and positive respectively, and the numerator is 
always positive. 
When x tends to  from the right, its limit value should be , When x tends to  from the left, its limit value 
should be , and this limit exists, so its value can only be 0.
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According to the limit formula, a rule can also be found: if the derivative at  is a positive number, it means that 
the function f(x) is monotonically increasing around this point, that is, if , then , that is, 

 increases as x increases. Or if  is a positive number, then  is also a positive number. For example, 
the derivative of  is , when x is greater than 0, the derivative is positive, therefore, 
the function curve is monotonically increasing. Similarly, if the derivative at  is positive, it means that the 
function f(x) is monotonically decreasing around this point, that is, if , then , That is, 

 becomes smaller as x increases. For example, when x is less than 0, the derivative of  is 
negative, so the function curve is monotonically decreasing, that is, if , instead .

For example, the function , let its derivative :

Two points  with a derivative of 0 can be obtained. The change of this function and its 
derivative function  is shown in Figure 2-1:

Figure 2-1 , the function increases monotonically, , the function decreases monotonically

In the interval ,  is a positive number, so the function f(x) is monotonically increasing, and in the 
interval ,  is a negative number, so the function f(x) is monotonically decreasing. In the interval 

,  is a positive number, so the function f(x) is monotonically increasing .

The following code draws the curve of this function and its derivative function, which can more intuitively reflect 
the monotonous change and extreme point of the function.

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

 

x = np.arange(-3, 4, 0.01)

f_x = np.power(x,3)-3*x**2-9*x+2

df_x = 3*x**2-6*x-9

 

plt.plot(x,f_x)

plt.plot(x,df_x)

plt.xlabel('x axis label')

plt.ylabel('y axis label')

plt.legend(['f(x)', "df(x)"])

plt.axvline(x=0, color='k')

plt.axhline(y=0, color='k')

plt.show()



Figure 2-2  and the function curve of its derivative 

Note that the above proposition only illustrates the necessary condition at the extreme point of the function, but 
not the sufficient condition, that is to say, the derivative  at a function  does not mean that  
must be an extreme point. For example, the derivative  of  at  is also 0, but this point is 
not the extreme point of the function. In fact, this is a monotonically increasing function, as shown in Figure 2-3.

Figure 2-3 Function curve of 

Obviously, the necessary conditions for the extremum of the function can be extended to multivariate functions, 
that is, for a multivariate function , if the function is at a certain point  
obtains an extreme value and the gradient at this point exists (that is, all partial derivatives exist), then the 
gradient at this point must be 0 (that is, each partial derivative value is is 0). Right now:

2.2 Gradient descent method (gradient descent)  

x = np.arange(-3, 3, 0.01)

f_x = np.power(x,3)

 

plt.plot(x,f_x)

plt.xlabel('x axis label')

plt.ylabel('y axis label')

plt.axvline(x=0, color='k')

plt.axhline(y=0, color='k')

plt.show()
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For a one-variable function f(x), if there is a small change  near a certain point x, then the change 
 of f(x) can be expressed as follows Differential form of :

Therefore, near , if  and  have the same sign, then  or  is a positive 
number, and if  and  have opposite signs, then  or  is a negative number. 
If you take  (where  is a small positive number),then  is a 
negative number, that is, the value of  will be smaller than . In other words, x moves  along 
the opposite direction  of , and its function value  is smaller than the original .

As shown in Figure 2.4, the function value  of the function  at  is 2.45, and the 
derivative value  is 3.0, which is a positive number, pointing to the positive direction of the  axis on the 
domain of , that is, the  axis, as shown by the long arrow in the figure.

 

Figure 2-4 ,  and  move with the same sign, the function value increases, 
otherwise, the function value decreases

Let , , move x along this  (in the direction of the blue arrow in the 
figure) to , the f(1.05) function value at the new  obtained is 1.3025, which is 
the y coordinate value of the blue point on the curve in the figure. Because  and  are in opposite 
directions (one negative and one positive), this f(1.05) must be smaller than the original f(1.5).

As long as this process is repeated continuously, that is, moving x along the opposite direction ( ) of its 
derivative  by a small increment  can reach a new , and the function value 

 of this new  must be smaller than the previous function value  .

As x continues to approach the x value of the minimum point, the derivative f'(x) is also close to 0 (because the 
derivative  of the function extreme point ),  and the increment  of x movement is getting closer 
and closer to 0.

This is the idea of     gradient descent method, that is, starting from an initial x, the value of x is continuously 
updated with the following formula:

For the current , moving  along its negative derivative (gradient) direction (ie  can make  keep 
getting smaller. Ideally,  of minimum  is reached, where . Then update  iteratively, and the 
value of  will no longer change. As shown in Figure 2-5,  is constantly updated iteratively, so that it is 
constantly approaching the extreme point.



 

Figure 2-5 x moves along , the function value keeps decreasing

Of course, the pace of this movement (ie ) cannot be too large, because according to the definition of 
the derivative, the above approximate formula is only applicable near . If the moving pace is too large, the 
optimal value of  may be skipped, making the value of  constantly oscillating back and forth. As shown in 
Figure 2-6.

 

Figure 2-6 The magnitude of  change  is too large, the function value will oscillate

The gradient descent method is to find an approximate optimal solution. In order to avoid iterating, the 
following methods can be used to check whether it is close enough to the optimal solution:

The absolute value of the derivative (gradient)  is small enough.

The number of iterations has reached the preset maximum number of iterations.

The following is the code of the gradient descent method, where the parameter df is used to calculate the 
derivative  of a function ,  is the initial value of the variable, alpha is the learning rate, and iterations 
represent The number of iterations, epsilon checks whether the value of df=  is close to 0.

def gradient_descent(df,x,alpha=0.01, iterations = 100,epsilon = 1e-8):

    history=[x]

    for i in range(iterations):

        if abs(df(x))<epsilon:

            print("The gradient is small enough!")

            break

        x = x-alpha* df(x)        

        history.append(x)

    return history



This gradient descent function saves all updated  during the iteration process in a python list object history and 
returns this object.

For the above function , its derivative . If you want the minimum 
value of the function  near , you can call this function gradient_descent():

Get the extreme point x=2.999999999256501 of . The points on the curve corresponding to x in the 
iteration process can be drawn:

Figure 2-7 x gradually converges to the minimum point

Among them, the quiver function of matplotlib can use arrows to draw velocity vectors, and its function format 
is:

Where X, Y are 1D or 2D arrays, indicating the position of the arrow, and U, V are the same 1D or 2D arrays, 
indicating the speed (vector) of the arrow. For other parameters, please refer to the official documentation.

For multivariable functions, the principle of the gradient descent method is the same, but the gradient is used 
instead of the derivative.

df = lambda x: 3*x**2-6*x-9

path = gradient_descent(df,1.,0.01,200)

print(path[-1])

The gradient is small enough!

    2.999999999256501

f = lambda x: np.power(x,3)-3*x**2-9*x+2

x = np.arange(-3, 4, 0.01)

y= f(x)

plt.plot(x,y)

 

path_x = np.asarray(path) #.reshape(-1,1)

path_y=f(path_x)

plt.quiver(path_x[:-1], path_y[:-1], path_x[1:]-path_x[:-1], path_y[1:]-path_y[:-1], 

scale_units='xy', angles='xy', scale=1, color='k')

plt.scatter(path[-1],f(path[-1]))

plt.show()

quiver([X, Y], U, V, [C], **kw)



The following is the Beale's function of Wikipedia.

The global minimum of this function is . The function value can be calculated with the following python 
code:

To draw this surface, first take some evenly distributed coordinate values   on the x and y axes:

Then use the np.meshgrid() function to get the grid points (x, y) at their intersections according to the above 
x_list and y_list, and calculate the function values   corresponding to these grid coordinate points:

Finally, the plot_surface() function can be called to draw this surface:

The complete code is as follows:

f  = lambda x, y: (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2

xmin, xmax, xstep = -4.5, 4.5, .2

ymin, ymax, ystep = -4.5, 4.5, .2

x_list = np.arange(xmin, xmax + xstep, xstep)

y_list = np.arange(ymin, ymax + ystep, ystep)

x, y = np.meshgrid(x_list, y_list)

z = f(x, y)

ax.plot_surface(x, y, z, norm=LogNorm(), rstride=1, cstride=1, 

                edgecolor='none', alpha=.8, cmap=plt.cm.jet)

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D  

from matplotlib.colors import LogNorm

import random

 

%matplotlib inline

 

f  = lambda x, y: (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2

 

minima = np.array([3., .5])

minima_ = minima.reshape(-1, 1)

 

xmin, xmax, xstep = -4.5, 4.5, .2

ymin, ymax, ystep = -4.5, 4.5, .2

x_list = np.arange(xmin, xmax + xstep, xstep)

y_list = np.arange(ymin, ymax + ystep, ystep)

x, y = np.meshgrid(x_list, y_list)

z = f(x, y)

 

fig = plt.figure(figsize=(8, 5))

ax = plt.axes(projection='3d', elev=50, azim=-50)

 

ax.plot_surface(x, y, z, norm=LogNorm(), rstride=1, cstride=1, 



Figure 2-8 Drawn f(x,y) surface

The partial derivative of  with respect to  is:

 

The gradient directions at these grid points can be plotted on a 2D coordinate plane using matplotlib's quiver 
function.

                edgecolor='none', alpha=.8, cmap=plt.cm.jet)

ax.plot(*minima_, f(*minima_), 'r*', markersize=10)

 

ax.set_xlabel('$x$')

ax.set_ylabel('$y$')

ax.set_zlabel('$z$')

 

ax.set_xlim((xmin, xmax))

ax.set_ylim((ymin, ymax))

 

plt.show()

df_x  = lambda x, y: 2*(1.5 - x + x*y)*(y-1) + 2*(2.25 - x + x*y**2)*(y**2-1) + 2*(2.625 - x 

+ x*y**3)*(y**3-1)

df_y  = lambda x, y: 2*(1.5 - x + x*y)*x + 2*(2.25 - x + x*y**2)*(2*x*y) + 2*(2.625 - x + 

x*y**3)*(3*x*y**2)

dz_dx = df_x(x, y)

dz_dy = df_y(x, y)

 

fig, ax = plt.subplots(figsize=(10, 6))

 

ax.contour(x, y, z, levels=np.logspace(0, 5, 35), norm=LogNorm(), cmap=plt.cm.jet)

ax.quiver(x, y, x - dz_dx, y - dz_dy, alpha=.5)

ax.plot(*minima_, 'r*', markersize=18)

 

ax.set_xlabel('$x$')

ax.set_ylabel('$y$')

 

ax.set_xlim((xmin, xmax))

ax.set_ylim((ymin, ymax))

 



Figure 2-9. Domain coordinate contours and gradient directions at grid points of the isosurface of the function 
f(x,y)

In order to directly use the previous gradient descent method code, x in the previous gradient descent method 
code can be represented by a numpy vector, and

change into:

First combine the separated x and y coordinate arrays into one array:

You can define a gradient function df for this vectorized coordinate point x. The following code also gives the 
implementation of the modified vectorized version of the gradient descent algorithm:

plt.show()

if abs(df(x))<epsilon:

if np.max(np.abs(df(x)))<epsilon:

print(x.shape)

print(y.shape)

 

x_ = np.vstack((x.reshape(1, -1) ,y.reshape(1, -1) ))

print(x_.shape)

(46, 46)

    (46, 46)

    (2, 2116)

df = lambda x: np.array( [2*(1.5 - x[0] + x[0]*x[1])*(x[1]-1) + 2*(2.25 - x[0] + 

x[0]*x[1]**2)*(x[1]**2-1)

                                        + 2*(2.625 - x[0] + x[0]*x[1]**3)*(x[1]**3-1),

                           2*(1.5 - x[0] + x[0]*x[1])*x[0] + 2*(2.25 - x[0] + x[0]*x[1]**2)*

(2*x[0]*x[1]) 



The following code starts from x0=(3., 4.) to solve the extreme point of this surface:

Gradient [25625.25 57519. ] of initial point [3. 4.] 
    Extreme points: [2.70735828 0.41689171]

Because the initial gradient value of x starts to be very large, the learning rate  must take a small number (such 
as 0.000005), otherwise it will cause shock or infinite value, and finally converge to [2.70735828 0.41689171] , 
But it is not the best point, you can see this situation more intuitively by drawing the change of x during the 
iteration process.

                                         + 2*(2.625 - x[0] + x[0]*x[1]**3)*(3*x[0]*x[1]**2)])

 

def gradient_descent(df,x,alpha=0.01, iterations = 100,epsilon = 1e-8):

    history=[x]

    for i in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")

            break

        x = x-alpha* df(x)       

        history.append(x)

    return history

x0=np.array([3., 4.])

print("initial point",x0,"gradient",df(x0))

 

path = gradient_descent(df,x0,0.000005,300000)

print("Extreme point：",path[-1])

def plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax):

    fig, ax = plt.subplots(figsize=(10, 6))

    ax.contour(x, y, z, levels=np.logspace(0, 5, 35), norm=LogNorm(), cmap=plt.cm.jet)

    #ax.scatter(path[0],path[1]);

    ax.quiver(path[:-1,0], path[:-1,1], path[1:,0]-path[:-1,0], path[1:,1]-path[:-1,1], 

scale_units='xy', angles='xy', scale=1, color='k')

    ax.plot(*minima_, 'r*', markersize=18)

 

    ax.set_xlabel('$x$')

    ax.set_ylabel('$y$')    

    ax.set_xlim((xmin, xmax))

    ax.set_ylim((ymin, ymax))

 

path = np.asarray(path) 

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)



 

Figure 2-10 During the iteration process, the gradient value becomes smaller and smaller, and the convergence 
becomes slower and slower

During the iterative process, the gradient value becomes smaller and smaller, and the same learning rate makes 
the update of  very slow. Even after 100,000 iterations, it still fails to approach the optimal solution. A natural 
approach is to use an adaptive learning rate, i.e. increase the learning rate when the gradient becomes small. As 
an exercise, the reader can try to modify the gradient descent algorithm to get to the optimal solution better 
and faster.

2.3 Parameter optimization strategy of gradient descent 
method

 

The learning rate in the basic gradient descent algorithm is a fixed value, and the gradient size is constantly 
changing during the iterative process. If the learning rate is too large, the variable to be solved will oscillate back 
and forth. If the learning rate is too small, the convergence will be very slow or even stagnant. The initial learning 
rate is moderate, but as the convergence approaches the optimal solution, its gradient is also close to 0, which 
will also cause stagnation. Naturally, the learning rate should be adjusted as it gradually converges during the 
iterative process, that is, a variable learning rate is used to update the variable x to be solved during the iterative 
process.

In order to ensure that the optimal solution can be approached better and faster, many improvements to the 
gradient descent method have been proposed. These improvements use a changing learning rate or strategy to 
update the solution variables (also called parameters). The update strategies or methods for variables 
(parameters) include: Momentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, Adam, AdaMax, 
Nadam, AMSGrad, etc.

It should be noted that the function may be a multi-variable function, therefore, its variable  can be a vector  
composed of multiple values. Only some of the commonly used optimization strategies are described below.

2.3.1 Momentum momentum method  

The gradient descent method uses the learning rate  and the negative direction of the gradient, that is, 
 to update  each time, that is, to update the vector x  depends entirely on the current 

calculated gradient, and the Momentum momentum method updates the vector of  not only considering the 
current gradient, but also considering the last update vector, that is, the updated vector is considered to have 
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inertia. Assuming that  is the vector used for update last time, the current updated vector is:

Update  with this :

This vector used to update  is called momentum. The momentum method regards the update vector as the 
velocity of a moving object, and the velocity has inertia. Due to the combination of the previous update vector 
and the current gradient, it alleviates the sharp changes in the gradient at different times, making the updated 
vector smoother, that is, maintaining the inertia of the previous motion, so that where the gradient is small, 
there is still a large motion. The speed will not overshoot due to the sudden increase of the gradient. This 
method is like a ball with weight rolling downhill, maintaining a certain amount of inertia while looking for the 
steepest descent path. Ordinary gradient descent only determines the speed of movement according to the 
degree of steepness, just like rushing fast in steep places and hardly moving in flat places.

The initial value of  is 0, which can be expressed in python code as:

That is,  is a tensor with the same shape as  with an initial value of 0. In the iterative process,  is updated 
first, and then the parameter  of the function is updated:

The following is the gradient descent method based on the momentum method:

Use the gradient descent method of this momentum method to solve the above problem:

[2.96324633 0.49067782]

It can be seen that the solution of the momentum method is very close to the optimal solution. as the picture 
shows.

v= np.zeros_like(x) 

v = gamma*v+alpha* df(x)

x = x-v

def gradient_descent_momentum(df, x, alpha=0.01, gamma = 0.8, iterations = 100, epsilon = 1e-

6):

    history=[x]

    v= np.zeros_like(x)            # momentum

    for i in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")

            break

        v = gamma*v+alpha* df(x)           # update momentum

        x = x-v                    # Update variables (parameters)

        

        history.append(x)

    return history

path = gradient_descent_momentum(df,x0,0.000005,0.8,300000)

print(path[-1])

path = np.asarray(path) 

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)



 

Figure 2-11 The momentum method quickly converges to a near-optimal solution

2.3.2 Adagrad method  

According to the variable update formula of the gradient descent method , what affects the 
variable update is the product of the learning rate and the gradient , the gradient is too large or too 
small and the learning rate is too large or too small will affect the convergence of the algorithm.

For a multivariate function, the magnitude of the partial derivatives for each variable can vary widely. For 

example, the absolute values   of the partial derivatives  of a function  of two variables at a 

certain point  may differ greatly.It is inappropriate to use the same learning rate for them. The 
appropriate learning rate for one component is too large or too small for the other component, resulting in 
shock and stagnation. That is, it is inappropriate to directly update with the following formula:

 

The Adagrad method can be translated as "adaptive (ada) gradient (grad)" from the noun, which divides each 
gradient component by the historical cumulative value of the gradient component, so that the problem of 
unbalanced gradient sizes of different components can be eliminated. For 2 components , if the 
historical cumulative value  of the respective components is calculated respectively, the update 
formula of the 2 components is:

 

Use the notation  to represent the partial derivative  of the component  in the t-th 

iteration, the component gradient of all rounds from t'=1  to t'=t  can be calculated as follows:

Divide  by  to update the component:

In order to prevent the divisor from being 0, a small positive number  can be added to this denominator, so 
that the parameter update formula of AdaGrad is:
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Compare the basic parameter update formula:

It can be seen that the AdaGrad method eliminates the unbalanced problem of component gradient sizes. The 
parameter update formula of AdaGrad can be written in vector form:

The accumulated  can be recorded with the variable gl with an initial value of 0. In each round of iteration, the 
python code for AdaGrad parameter update is as follows:

The main advantage of the AdaGrad method is that it eliminates the influence of different gradient values, so 
that the learning rate can be set to a fixed value without continuously adjusting the learning rate in the iterative 
process. The general learning rate is set to 0.01. The main disadvantage of the AdaGrad method is that with the 
iterative process, the cumulative sum  will become larger and larger, because each of them is a 
positive number . This can lead to slow learning, or even a standstill. Also, making each component gradient 
have a consistent pace may not be realistic and can divert the direction of progress from the direction of the 
optimal solution.

The code of the gradient descent method based on the Adagrad parameter update method is as follows:

For the above problem, perform the gradient descent algorithm:

[-0.69240717 1.76233766]

It can be seen that due to the equalization of the component gradients, the forward direction of the variable 
update deviates from the optimal solution method, and converges to another local optimal solution.

gl += df(x)**2

x = x-alpha* df(x)/(sqrt(gl)+epsilon)

def gradient_descent_Adagrad(df,x,alpha=0.01,iterations = 100,epsilon = 1e-8):

    history=[x]

    #v= np.zeros_like(x) 

    gl = np.ones_like(x)

    for i in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")

            break

        grad = df(x)

        gl += grad**2

        x = x-alpha* grad/(np.sqrt(gl)+epsilon)      

        history.append(x)

    return history

path = gradient_descent_Adagrad(df,x0,0.1,300000,1e-8)

print(path[-1])

path = np.asarray(path) 

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)



 

Figure 2-12 Adagrad method converges to another local minimum

2.3.3 Adadelta method  

Reviewing the basic parameter update method, use  to represent the update vector of the parameter:

The update vector of the AdaGrad method is:

Here  is the historical sum of squares of . With the iterative process, this value  is getting bigger 
and bigger, resulting in  is getting smaller and smaller, so the convergence is getting slower and slower. The 
solution is to replace  with the sum of mean squares  instead of the sum of squares. This  
can be calculated using the moving average method, that is, to make an average of the last average value and 
the current value:

The Adadelta method goes a step further and uses such a moving average method for the update vector to 
make the change of the update vector smoother.

The final update vector is:

Use  to represent  and , the update vector can be expressed 
as:

So the parameter update formula is:
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The python code for the Adadelta method is as follows:

The decay rate parameter  of the Adadelta method is usually set to 0.9, and the initial value of 
 is also 0. The code of the gradient descent method based on the Adadelta parameter 

update method is as follows:

It can be seen that the Adadelta method can also converge to a close to the optimal solution.

Eg = rho*Eg+(1-rho)*(grad**2)                # Update the cumulative sum of squares of the 

gradient

delta = np.sqrt((Edelta+epsilon)/(Eg+epsilon))*grad  # calculate update vector

x = x - alpha* delta

Edelta = rho*Edelta+(1-rho)*(delta**2)       # Cumulative update of update vector

def gradient_descent_Adadelta(df,x,alpha = 0.1,rho=0.9,iterations = 100,epsilon = 1e-8):

    history=[x]    

    Eg = np.ones_like(x)

    Edelta = np.ones_like(x)   

    for i in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")

            break

        grad = df(x)

        Eg = rho*Eg+(1-rho)*(grad**2)        

        delta = np.sqrt((Edelta+epsilon)/(Eg+epsilon))*grad

        x = x- alpha*delta

        Edelta = rho*Edelta+(1-rho)*(delta**2)     

        history.append(x)

    return history

path = gradient_descent_Adadelta(df,x0,1.0,0.9,300000,1e-8)

print(path[-1])

path = np.asarray(path) 

[2.9386002 0.45044889]

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)



 

Figure 2-13 Adadelta method can also converge to a near optimal solution

2.3.4 RMSprop method  

Similar to the momentum method, RMSprop uses the following formulas to update the momentum and 
parameters:

 

The idea is to divide each value of the gradient by the length (the absolute value of the value), that is, convert it 
into a unit length, so that the parameter x is always updated with a fixed step size . In order to calculate the 
length of each component of the gradient, RMSprop is similar to the momentum method to calculate the square 
value of the moving average length of the gradient value, that is, .

The python code for updating model parameters by the RMSprop method is as follows:

The code of the gradient descent method based on the RMSprop parameter update method is as follows:

v= np.ones_like(x)

#...

grad = df(x)

v = beta*v+(1-beta)* grad**2

x = x-alpha*(1/(np.sqrt(v)+epsilon))*grad
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For the above problem, perform the gradient descent algorithm:

The results for the model parameters are not good enough, you can increase the number of iterations:

It can be seen that the basic convergence is close to the optimal solution, as shown in Figure 2-14:

def gradient_descent_RMSprop(df,x,alpha=0.01,beta = 0.9, iterations = 100,epsilon = 1e-8):

    history=[x]   

    v= np.ones_like(x)

    for i in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")

            break

        grad = df(x)       

        v = beta*v+(1-beta)*grad**2       

        x = x-alpha*grad/(np.sqrt(v)+epsilon)

      

        history.append(x)

    return history

path = gradient_descent_RMSprop(df,x0,0.000005,0.99999999999,300000,1e-8)

print(path[-1])

path = np.asarray(path) 

[2.70162562 0.41500366]

path = gradient_descent_RMSprop(df,x0,0.000005,0.99999999999,900000,1e-8)

print(path[-1])

path = np.asarray(path) 

[2.9082809 0.47616156]

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)



Figure 2-14 The RMSprop method can also basically converge

2.3.5 Adam method  

In addition to storing an exponentially decaying cumulative mean of the squares of past gradients like the 
RMSprop method, it also stores a cumulative mean of the gradients like the momentum method. The 
momentum method can be seen as a ball running down a slope, but the Adam method behaves like a ball with 
friction and is therefore better suited for flat minima. Use  to represent the moving average of past 
gradients and gradient squares:

They are equivalent to the first-order and second-order momentum of the gradient, because their initial value is 
0, Adam's author observed: when the decay rate is small, such as  is close to 1, they are biased towards 
zero, Especially in the early stages of an iteration. To correct this problem, the authors used the following 
correction formula:

Update  based on this:

#https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

def gradient_descent_Adam(df,x,alpha=0.01,beta_1 = 0.9,beta_2 = 0.999, iterations = 

100,epsilon = 1e-8):

    history=[x]

    m = np.zeros_like(x)

    v = np.zeros_like(x)

    for t in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")
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For the above problem, execute the gradient descent algorithm gradient_descent_Adam:

Figure 2-15 The Adam method can also converge to a near optimal solution

            break

        grad = df(x)

        m = beta_1*m+(1-beta_1)*grad

        v = beta_2*v+(1-beta_2)*grad**2

        

        #m_1 = m/(1-beta_1)

        #v_1 = v/(1-beta_2) 

        t = t+1

        if True:

            m_1 = m/(1-np.power(beta_1, t+1))

            v_1 = v/(1-np.power(beta_2, t+1))     

        else:        

            m_1 = m / (1 - np.power(beta_1, t)) + (1 - beta_1) * grad / (1 - np.power(beta_1, 

t))

            v_1 = v / (1 - np.power(beta_2, t))

    

        x = x-alpha*m_1/(np.sqrt(v_1)+epsilon)

        #print(x)

        history.append(x)

    return history

path = gradient_descent_Adam(df,x0,0.001,0.9,0.8,100000,1e-8)

#path = gradient_descent_Adam(df,x0,0.000005,0.9,0.9999,300000,1e-8)

print(path[-1])

path = np.asarray(path) 

#plt.plot(path)

[2.99999653 0.50000329]

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)
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2.4 Gradient verification  

2.4.1 Comparing numerical and analytical gradients  

When writing the code of the gradient descent algorithm, the most likely mistake is that the gradient calculation 
is incorrect, which leads to the inability of the algorithm to converge. Therefore, in addition to adjusting the 
learning rate, you should check whether the gradient calculation is correct. To this end, according to the 
definition of the derivative, that is, the derivative is the rate of change of the function, the derivative (gradient) of 
the function at a point  can be estimated by the following formula:

That is, use the division on the right side of the formula to approximate the derivative (gradient) of  at . If  
is small enough, the derivative (gradient) of this value should be the same as the analytical derivative (gradient) 
on the left ) are close enough.

Therefore, before training the model with the gradient descent method, the numerically calculated gradient and 
the analytical gradient can be compared to verify that the analytical gradient is calculated correctly.

For example, for the previous binary function , in the gradient descent method, the 
function is at a point  The function values   and analytical gradients of are calculated by the following 
code.

The numerical gradient at the point  can be calculated as follows:

The following code snippet compares the errors of the analytical and numerical gradients at the point 
:

It can be seen that as long as the small increment eps of calculating the numerical gradient is small enough, this 
numerical gradient is close enough to the analytical gradient, and this is the definition of the derivative: the 
numerical gradient can be close enough to the analytical gradient. If it is found that the error of the two is 
relatively large or large, it means that there may be a problem with the calculation of the analytical gradient or 
function value or numerical gradient. Most of the errors are problems with the calculation of the analytical 
gradient or function value.

f = lambda x: (1/16)*x[0]**2+9*x[1]**2

df = lambda x: np.array( ((1/8)*x[0],18*x[1]))

df_approx = lambda x,eps:((f([x[0]+eps,x[1]])-f([x[0]-eps,x[1]]) )/(2*eps),( 

f([x[0],x[1]+eps])-f([x[0],x[1]-eps]) )/(2*eps))

x = [2.,3.]

eps = 1e-8

grad = df(x)

grad_approx = df_approx(x,eps)

print(grad)

print(grad_approx)

print(abs(grad-grad_approx))

[ 0.25 54. ]

    (0.2500001983207767, 54.00000020472362)

    [1.98320777e-07 2.04723619e-07]
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Before using the gradient descent method to solve the optimal solution, the gradient verification method should 
be used to ensure that the calculation of the analysis gradient and function value is correct. On this basis, adjust 
the hyperparameters of the gradient descent method such as learning rate or momentum parameters.

2.4.2 Generic numerical gradients  

Machine learning includes the hypothetical function in deep learning that contains a lot of parameters, and a 
general numerical gradient calculation function can be written:

The parameter f accepted by this function indicates the function to calculate the gradient, and params indicates 
the parameters of the function, because f may have multiple parameters, and params indicates a set of these 
multiple parameters (such as python's list, tuple, etc. object). To be more general, assume that each element x of 
params is a multidimensional array containing multiple elements.

In the inner loop, for the element  pointed to by each subscript idx of x, add a small increment 
 and  respectively and calculate the corresponding The function value f(), and then 

use the differential approximation formula of the derivative to calculate the partial derivative corresponding to 
this  and assign it to . Note: After each modification of , it must be restored to the 
original value, otherwise it will affect the calculation of other partial derivatives and affect the value of params 
after exiting this function.

You can use this general numerical gradient computation function to compute the numerical gradient of the 
previous function:

def numerical_gradient(f, params, eps = 1e-6):

    numerical_grads = []

    for x in params:

        # x may be a multidimensional array, 

        # for each element, calculate its numerical partial derivative

        grad = np.zeros(x.shape)

        it = np. nditer(x, flags=['multi_index'], op_flags=['readwrite']) #

        while not it. finished:

            idx = it.multi_index

            old_value = x[idx]

            x[idx] = old_value + eps    # x[idx]+eps

            fx = f()

            x[idx] = old_value - eps    # x[idx] - eps

            fx_ = f()

            grad[idx] = (fx - fx_) / (2*eps)

            x[idx] = old_value    # Note: Be sure to restore the weight parameter to its 

original value.

            it.iternext()         # Loop through the next element of x

      

        numerical_grads.append(grad)

    return numerical_grads

x = np.array([2.,3.])

param = np.array(x)        # The parameter param of numerical_gradient must be a numpy array

numerical_grads = numerical_gradient(lambda:f(param),[param],1e-6)

print(numerical_grads[0])

[ 0.25 54.00000001]
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Note that the first parameter f of numerical_gradient must point to a function object rather than the result of a 
function call. It is wrong to write lambda:f(param)  above as f(param)  .

For a function f that contains some parameters such as param, usually the above lambda expression or the 
following wrapper function fun can be used to return a function object that performs calculations on the 
parameter param.

In the following chapters, this general numerical gradient calculation function numerical_gradient() will be used 
to calculate the numerical gradient of the model function. This function and others are included in the book's 
source code file util.py.

2.5 Separation gradient descent algorithm and parameter 
optimization strategy

 

2.5.1 Parameter optimizer  

The optimization strategy of variables (parameters) is hard-coded in the gradient descent algorithm. The 
gradient descent method of different optimization strategies has the same framework except for the parameter 
update. In order to improve code reusability and flexibility, parameter optimization strategies can be classified 
from gradient descent algorithms.

A class representing a parameter optimization strategy can be defined:

params is a list of variables (parameters), and step() is used to update these parameters params according to 
the gradient grads. For example, the parameter optimizer class SGD that defines the parameter optimization 
strategy using the basic gradient descent method can be derived on the basis of this class:

def fun():

    return f(param)

 

numerical_grads = numerical_gradient(fun,[param],1e-6)

print(numerical_grads[0])

[ 0.25 54.00000001]

class Optimizator:

    def __init__(self,params):

        self.params = params   

                

    def step(self,grads): 

       pass

    def parameters(self):

        return self.params

class SGD(Optimizator):

    def __init__(self,params,learning_rate):

        super().__init__(params)

        self.lr = learning_rate   

                

    def step(self,grads): 

        for i in range(len(self.params)):

            self.params[i] -= self.lr*grads[i] 

        return self.params
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Similarly, other parameter optimizers can be defined, such as SGD_Momentum of the momentum method:

2.5.2 Gradient descent method accepting parameter optimizer  

As long as the gradient descent algorithm accepts the parameter optimizer that updates the parameters, it can 
update the parameters according to the optimization strategy of the optimizer:

Looking at a simple convex function surface,

This is a bowl-shaped surface, as shown in Figure 2-16. Its minimum value is at the bottom of the bowl, that is, 
(0,0) is the minimum value point of the entire function, and the minimum value is 0.

 

Figure 2-16 Function  surface

class SGD_Momentum(Optimizator):

    def __init__(self,params,learning_rate,gamma):

        super().__init__(params)

        self.lr = learning_rate        

        self.gamma= gamma

        self.v = []

        for param in params:

            self.v.append(np.zeros_like(param) )

                

    def step(self,grads): 

        for i in range(len(self.params)):

            self.v[i] = self.gamma*self.v[i]+self.lr* grads[i]

            self.params[i] -= self.v[i]

        return self.params

def gradient_descent_(df,optimizator,iterations,epsilon = 1e-8):

    x, = optimizator.parameters()

    x = x.copy()

    history=[x]    

    for i in range(iterations):

        if np.max(np.abs(df(x)))<epsilon:

            print("The gradient is small enough!")

            break

        grad = df(x)

        x, = optimizator.step([grad])

        x = x.copy()

        history.append(x)

    return history

af://n247


To this function, apply the SGD parameter optimizer described above:

Approaching the optimal solution, switch to the SGD_Momentum optimizer:

It also better approximates the optimal solution.

df = lambda x: np.array( ((1/8)*x[0],18*x[1]))

x0=np.array([-2.4, 0.2])

 

optimizator = SGD([x0],0.1)

path = gradient_descent_(df,optimizator,100)

print(path[-1])

path = np.asarray(path) 

path = path.transpose()

    [-8.26638332e-06 2.46046384e-98]

x0=np.array([-2.4, 0.2])

optimizator = SGD_Momentum([x0],0.1,0.8)

path = gradient_descent_(df,optimizator,1000)

print(path[-1])

path = np.asarray(path) 

path = path.transpose()

    The gradient is small enough!

    [-1.49829905e-08 -4.74284398e-10]
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