
Anatomy of Deep
Learning Principles

Coding a deep learning
library from scratch

hwdong

hwdong-net.github.io

Brief introduction

This book introduces the basic principles and implementation process of deep learning in a simple way, and
uses python's numpy library to build its own deep learning library from scratch instead of using existing deep
learning libraries. On the basis of introducing basic knowledge of Python programming, calculus, and probability
statistics, the core basic knowledge of deep learning such as regression model, neural network, convolutional
neural network, recurrent neural network, and generative network is introduced in sequence according to the
development of deep learning. While analyzing the principle in a simple way, it provides a detailed code
implementation process. It is like not teaching you how to use weapons and mobile phones, but teaching you
how to make weapons and mobile phones by yourself. This book is not a tutorial on the use of existing deep
learning libraries, but an analysis of how to develop deep learning libraries from 0. This method of combining
the principle from 0 with code implementation can enable readers to better understand the basic principles of
deep learning and the design ideas of popular deep learning libraries.

Preface

Since the invention of computers, it has been the goal of computer scientists to make machines have human-like
intelligence. Since the concept of "artificial intelligence" was proposed in 1956, artificial intelligence research has
experienced many ups and downs from peak to trough, trough to peak In the development process of AI, from
rule-based reasoning based on mathematical logic to state-space search reasoning, from expert systems to
statistical learning, from crowd intelligence algorithms to machine learning, from neural networks to support
vector machines, different artificial intelligence technologies used to lead the way.

In the past 6 years, deep learning using deep neural networks has been brilliant and advanced by leaps and
bounds. Successful applications of deep learning such as AlphaGo defeating the human Go champion,
automatic driving, machine translation, speech recognition, and deep face changing continue to attract people's
attention. As a branch of machine learning, deep learning brings traditional neural network technology back to
life, and has established itself as the overlord of modern artificial intelligence among all artificial intelligence
technologies. status.

Deep learning has no complex and esoteric theories. In principle, it is still a traditional neural network, that is,
some simple neuron functions are combined into a complex function and a simple gradient descent method is
used to learn the model in the neural network based on actual sample data. parameter. Its success is mainly
attributed to computer hardware, especially graphics processors GPUs with increasingly powerful parallel
computing performance and more and more big data.

The future society will be a society of artificial intelligence. Artificial intelligence will be everywhere. Many jobs
will be replaced by artificial intelligence. course.

With the help of some deep learning platforms such as tensorflow, pytorch, and caffe, a primary school student
can easily use the deep learning library to do various applications such as face recognition and speech
recognition. What he does is to directly call the APIs of these platforms to define the model of the deep neural
network. Structure and tune training parameters. These platforms make deep learning very easy, make deep
learning enter the homes of ordinary people, and artificial intelligence is no longer mysterious. From universities
to enterprises, people from all walks of life are using deep learning to carry out various research and
applications.

Like any technology, only by thoroughly understanding the principles behind the technology can the technology
be better applied. There are a large number of scattered articles on the Internet explaining the principles of
deep learning, and there are also some deep learning courses and tutorials. Books are still an important way to
learn systematically. The written deep learning books are mainly divided into several categories: one is books
that focus on mathematical theory for experts or professional researchers. These books, like academic papers,
are difficult for readers to understand. These books lack in-depth analysis of the principles and code

af://n0
af://n3

implementation, and readers may still not know how to implement them even if they work hard to understand
the principles. The other category is tool books, which mainly introduce how to use various deep learning
platforms, with very little explanation of the principles, making readers unable to understand the principles
behind the code, and can only follow the gourd. There are also some books that are just popular books, and
they have a taste of every technology, and the principles and codes are often superficial. There are also very few
books that introduce the principles and also have code implementations, and avoid the derivation of
mathematical formulas as much as possible.

The author believes that platform tutorial books are time-sensitive, and the publication cycle of the book is
usually as long as one year, and the interface of the platform may have undergone some changes or even major
changes. For the changing platform, such books are almost worthless . Principle books should be easy to
understand, try to avoid complex and esoteric mathematics, but completely abandon the classic advanced
mathematics developed by mathematicians for thousands of years, and using elementary school mathematics
to describe functions for derivation is not suitable for readers with advanced mathematics knowledge. Not an
optimal choice. However, there is a special lack of easy-to-understand books on the market that introduce the
principles and how to implement deep learning from the bottom instead of using deep learning libraries.

In order to take care of readers who are difficult in mathematics, the first chapter of this book not only
introduces the necessary knowledge of python programming, but also introduces some necessary knowledge of
calculus and probability as popularly as possible. On this basis, this book transitions from the simplest
regression model to the neural network model from the shallower to the deeper, and uses the method from
problem to concept to explain the basic concepts and principles in an easy-to-understand manner. Avoiding
long speeches and avoiding "treasure words like gold", use simple examples and concise and popular language
to analyze the core principles of models and algorithms. On the basis of understanding the principle, further use
python's numpy library to implement the code from the bottom layer, so that readers can be enlightened on the
principle and implementation. Through reading this book, readers can follow step by step to build a deep
learning library from 0 without any deep learning platform. Finally, as a comparison, the use of the deep
learning platform Pytorch is introduced, so that readers can easily learn to use this deep learning platform,
which will help readers understand the design ideas of these platforms more deeply, so as to better grasp and
use these deep learning platforms. Learning platform.

This book is suitable not only for beginners without any deep learning knowledge, but also for practitioners who
have experience in using deep learning libraries and want to understand its underlying implementation
principles. This book is especially suitable as a deep learning textbook for colleges and universities.

Relevant resources of the book (including algorithm codes) can be found on the author's website
https://hwdong-net.github.io.

The English version of this book is translated using Google Translate on the basis of the Chinese version. We will
continue to improve the quality of the translation in the future, and we hope readers can help me correct errors.

My email: hwdong.cn@gmail.com

eBook link (English Version): https://leanpub.com/dle/

eBook link (ChineseVersion): https://leanpub.com/dl_0

eBook link (Japanese): https://leanpub.com/dl_jp

eBook link (Traditional Chinese): https://leanpub.com/dl_tw

https://hwdong-net.github.io/
mailto:hwdong.cn@gmail.com
https://leanpub.com/dle/
https://leanpub.com/dl_0
https://leanpub.com/dl_jp
https://leanpub.com/dl_tw

Chapter 1 Programming and Math Fundamentals

1.1 Python quick start

1.1.1 Python installation

Python interpreter installation

jupyter notebook programming environment

Anaconda installation tool

1.1.2 Object, print() function, type conversion, comment, variable, input() function

1. Objects

2. Print function print()

3. Type conversion

4. Notes

5. Variables

6. input() function

1.1.3 Operation

[subscript operator []](#subscript-operator-)

String formatting

1.1.4 Control Statements

1. if statement

2. while statement

3. for statement

1.1.5 Python commonly used container types

1. list (list)

index

slice

for traverse all elements

2. tuple (tuple)

3. set (collection)

4. dict (dictionary)

1.1.6 Functions

math math package

Global and local variables

Anonymous/Lambda Function (anonymous/lambda function)

Nested functions, closures

yield and generators

1.1.7 Classes and Objects

1.1.8 Getting Started with Matplotlib

subplot()

Axes objects

mplot3d

display image

1.2 tensor library numpy

1.2.1 What is a tensor?

1 vector

The norm of the vector

2 Matrix

3 dimensional tensor

1.2.2 Create ndarray object

1. array()

2. Multidimensional array type ndarray

3. asarray()

4. The tolist() method of ndarray

5. astype() and reshape()

6. arange() and linspace()

7. full(), empty(), zeros(), ones(), eye()

8. Common functions for creating tensors of random values

9. Add, Repeat & Lay, Merge & Split, Edge Fill, Add Axis & Swap Axis

Repeat repeat()

laying tile()

merge concatenate()

overlay stack()

column_stack(), hstack(), vstack()

split split()

Edge Padding

Add Axis

Swap axes

1.2.3 Indexing and slicing of ndarry arrays

1.2.4 Tensor calculation

1. Element-by-element calculation

Hadamard Product

2. Cumulative calculation

3. Dot Product

4 Broadcast Broadcasting

1.3 Calculus

1.3.1 Functions

1.3.2 Four arithmetic and compound operations

Arithmetic

Composite

1.3.3 Limits, derivatives

1. The limit of the sequence

2. Limit and continuity of function

3. Derivatives of functions

1.3.4 The Four Arithmetic Operations of Derivatives and the Chain Derivation Rule

1.3.5 Calculation graph, forward calculation, backpropagation derivation

1.3.6 Partial derivatives and gradients of multivariable functions

1.3.7 Derivative of vector-valued function and Jacobian matrix

1.3.8 Integral

1.4 Probability Basics

1.4.1 Probability

1.4.2 Conditional probability, joint probability, total probability formula, Bayesian formula

1.4.3 Random variables

1.4.4 Probability distribution sequence of discrete random variables

1.4.5 Probability Density of Continuous Random Variables

1.4.6 Distribution functions of random variables

1.4.7 Expectation, variance, covariance, covariance matrix

1. Mean and Expectation

2. Variance, standard deviation

3. Covariance, covariance matrix

Chapter 2 Gradient descent method

2.1 Necessary conditions for function extremum

2.2 Gradient descent method (gradient descent)

2.3 Parameter optimization strategy of gradient descent method

2.3.1 Momentum momentum method

2.3.2 Adagrad method

2.3.3 Adadelta method

2.3.4 RMSprop method

2.3.5 Adam method

2.4 Gradient verification

2.4.1 Comparing numerical and analytical gradients

2.4.2 Generic numerical gradients

2.5 Separation gradient descent algorithm and parameter optimization strategy

2.5.1 Parameter optimizer

2.5.2 Gradient descent method accepting parameter optimizer

Chapter 3 Linear Regression, Logistic Regression and Softmax Regression

3.1 Linear regression

3.1.1 Dining car profit problem

3.1.2 Machine Learning and Artificial Intelligence

1. Machine Learning

2. The relationship between machine learning and artificial intelligence

3. Classification of machine learning

3.1.3 What is linear regression?

3.1.4 Normal equations to solve linear regression problems

3.1.5 Gradient descent method to solve linear regression problems

3.1.6 Debug learning rate

3.1.7 Gradient verification

3.1.8 Prediction

3.1.9 Linear regression with multiple features

1. Multi-feature linear regression

2. Fitting plane

3. Temperature and pressure problems

3.1.10 Normalization of data

3.2 Evaluation of the model

3.2.1 Underfitting and overfitting

3.2.2 Verification set, test set

3.2.3 Learning Curve

3.2.4 Forecasting the output of the dam

3.2.5 Bias and variance (Bias-Variance)

3.3 Regularization
 - The loss function of adding the regular term becomes

3.5 Logistic regression

3.5.1 Logistic regression

3.5.2 numpy implementation of logistic regression

1. Generate data

2. Code implementation of gradient descent method

3. Calculate the loss function value

4. Decision curve

5. Prediction accuracy

6. Logistic Regression with Scikit-Learn Library

3.5.3 Actual combat: numpy implementation of iris classification

3.6 softmax regression

3.6.1 spiral data set

3.6.2 softmax function

3.6.3 softmax regression

Multi-sample form

3.6.4 Multi-classification cross-entropy loss

3.6.5 Calculate cross entropy loss by weighted sum

3.6.6 Gradient calculation of softmax regression

1. The gradient of the cross-entropy loss on the weighted sum

2. The gradient of the cross-entropy loss with respect to the weight parameter

3.6.7 Implementation of gradient descent method for softmax regression

2.6.8 Softmax regression of spiral data set

3.7 Batch Gradient Descent and Stochastic Gradient Descent

3.7.1 MNIST handwritten digit set

3.7.2 Training logistic regression with partial training samples

3.7.3 Batch Gradient Descent Method and Implementation

Softmax regression of Fasion MNIST training set

3.7.4 Stochastic Gradient Descent

Summarize

Chapter 4 Neural Networks

4.1 Neural Network

4.1.1 Perceptrons and neurons

1. Perceptron

2. Neurons

4.1.2 Activation function

1. Step function sign(x)

2. Tanh function

4. ReLU function

4.1.3 Neural Networks and Deep Learning

4.1.4 Forward calculation of multiple samples

4.1.5 Output

4.1.6 Loss function

1. Mean square error loss

2. Binary classification cross entropy loss

3. Multi-classification cross-entropy loss

4.1.7 Neural Network Training Based on Numerical Gradients

4.1.8 Deep Learning

4.2 Reverse derivation

4.2.1 Forward calculation and reverse derivation

4.2.2 Computation graph

4.2.3 The gradient of the loss function with respect to the output

1. The gradient of the binary cross-entropy loss function on the output

2. The gradient of the mean square error loss function on the output

3. The gradient of the multi-class cross entropy loss function on the output

4.2.4 Derivation of back propagation of 2-layer neural network

1. Reverse derivation of single sample

2. Multi-sample vectorized representation of reverse derivation

3. Gradient calculation formula in column vector form

4.2.5 Python implementation of 2-layer neural network

4.2.6 Derivation of backpropagation of any layer neural network

4.3 Implement a simple deep learning framework

4.3.1 Training process of neural network

4.3.2 Code implementation of the network layer

4.3.3 Gradient test of network layer

4.3.4 Neural Network Class

4.3.5 Gradient test of neural network

4.3.6 MNIST data handwritten digit recognition based on deep learning framework

4.3.7 Improved general neural network framework: separate weighted sum and activation
function

Gradient Validation

4.3.8 Independent parameter optimizer

4.3.9 fashion-mnist classification training

4.3.9 Read and write model parameters

Chapter 5 Basic Techniques for Improving Neural Network Performance

5.1 Data processing

5.1.1 Data Augmentation

5.1.2 Normalization

5.1.3 Feature Engineering

1. Data dimensionality reduction and principal component analysis

2 Whitening

5.2 Parameter debugging

5.2.1 Weight initialization

5.2.2 Optimization parameters

5.3 Batch Normalization

5.3.1 What is batch normalization?

5.3.2 Reverse derivation of batch normalization

5.3.3 Code Implementation of Batch Normalization

5.4 Regularization Regularization

5.4.1 Weight regularization

5.4.2 Dropout

5.4.3 Early stopping method (Early stopping)

Chapter 6 Convolutional Neural Network CNN

6.1 Convolution

6.1.1 What is convolution?

span

6.1.2 Convolution of one-dimensional signal

6.1.3 Two-dimensional convolution

span

6.1.4 Multiple input channels and multiple output channels

6.1.5 Pooling

6.2 Convolutional Neural Network

6.2.1 Fully connected neurons and convolutional neurons

6.2.2 Convolutional Layer and Convolutional Neural Network

6.2.3 Reverse derivation and code implementation of convolutional layer and pooling layer

Reverse derivation of convolutional layer

The reverse derivation of the pooling layer

6.2.4 Implementation of convolutional neural network

6.3 Convolution matrix multiplication

6.3.1 Matrix multiplication of 1D sample convolution

6.3.2 Matrix multiplication of 2D sample convolution

6.3.3 Matrix multiplication for reverse derivation of 1D convolution

6.3.4 Matrix multiplication for reverse derivation of 2D convolution

6.4 Fast convolution based on coordinate index

Gradient Test

Time comparison with non-accelerated convolution

6.5 Typical convolutional neural network structure

6.5.1 LeNet-5

6.5.2 AlexNet

6.5.3 VGG

6.5.4 Gradient Explosion and Vanishing Problems of Deep Neural Networks

6.5.5 Residual Networks (ResNets)

6.5.6 Google Inception Network

6.5.7 Network in Network (NiN)

Chapter 7 Recurrent Neural Network RNN

7.1 Sequence problems and models

7.1.1 Stock Price Prediction Problem

7.1.2 Probabilistic sequence model, language model

1. Probabilistic sequence model

2. Language Model

7.1.3 Autoregressive model

7.1.4 Generate autoregressive data

7.1.5 Time window method

7.1.6 Time window sampling

7.1.7 Time window method modeling and training

7.1.8 Long-term forecast and short-term forecast

7.1.9 Stock Price Prediction

7.1.10 k-gram language model

7.2 Recurrent Neural Networks

7.2.1 Acyclic neural network without memory function

7.2.2 Recurrent neural network with memory function

7.3 Backpropagation through time

7.4 Implementation of single-layer recurrent neural network

7.4.1 Initialize model parameters

7.4.2 Forward calculation

7.4.3 Loss function

7.4.4 Reverse derivation

7.4.5 Gradient verification

7.4.6 Gradient descent training

7.4.7 Sampling of sequence data

7.4.8 RNN training and prediction of sequence data

Training on sequence data

predict

Training and prediction of stock data

7.5 RNN language model and text generation

7.5.1 Character table

7.5.2 Sampling of character sequence samples

7.5.3 RNN model training and prediction

predict

7.6 Gradient explosion and gradient disappearance of RNN network

7.7 Long Short-Term Memory Network (LSTM)

7.7.1 LSTM neuron: cell

7.7.2 Reverse derivation of LSTM

7.7.3 LSTM code implementation

Gradient Test

Text generation

predict

7.7.4 Variations of LSTM

7.8 Gated Recurrent Unit (GRU)

7.8.1 Working principle of GRU

7.8.2 GRU code implementation

7.9 Class Representation and Implementation of Recurrent Neural Network

7.9.1 Implementing Recurrent Neural Networks with Classes

7.9.2 Class implementation of recurrent neural network unit

7.10 Multilayer, Bidirectional Recurrent Neural Network

7.10.1 Multilayer Recurrent Neural Network

7.10.2 Training and prediction of multi-layer recurrent neural network

7.10.3 Bidirectional Recurrent Neural Network

7.11 Sequence to sequence (seq2seq) model

machine translation

7.11.1 Implementation of Seq2Seq model

7.11.2 Seq2Seq for character-level machine translation

1. Character word list

2. Read training samples and build character vocabulary

3. Training character-level Seq2Seq model

7.11.3 Seq2Seq machine translation based on Word2Vec

1. Word vectorization Word2Vec's skip-gram method

7.11.4 Seq2Seq model based on word embedding layer

1. Word embedding layer

2. Seq2Seq model using word embedding layer

7.11.5 Attention mechanism

Chapter 8 Generating Models

8.1 Generate model

8.2 Autoencoders

8.2.1 Autoencoder

8.2.2 Sparse Encoder

8.2.3 Implementation of Autoencoder

8.3 Variational Autoencoders

8.3.1 What is a variational autoencoder?

8.3.2 Loss function

8.3.3 Parameter resampling

8.3.4 Reverse Derivation

8.3.4 Implementation of Variational Autoencoder

8.4 Generating Adversarial Networks

8.4.1 Principle of GAN

1. Discriminator and Generator

2. Loss function

3. Training process

8.4.2 Code implementation of GAN training process

8.5 GAN modeling example

8.5.1 GAN modeling of a set of real numbers

1. Real data: a set of real numbers

2. Define discriminator and generator functions

3. Real data iterator, noise data iterator

4. Intermediate result drawing function

5. Training GAN

8.5.2 GAN modeling of two-dimensional coordinate points

1. Real data: coordinate points sampled on the elliptic curve

2. Real data iterator, noise iterator

3. Define the generator and discriminator of the GAN model

4. Training GAN model

8.5.3 GAN modeling of MNIST dataset

1. Read training data

2. Define the data iterator

3. Define the generator and discriminator and its optimizer

4. Training model

8.5.4 GAN training techniques

8.6 GAN loss function and its probability explanation

8.6.1 The global optimal solution of the loss function of GAN

8.6.2 Kullback–Leibler divergence and Jensen–Shannon divergence

8.6.3 Maximum Likelihood Interpretation of GAN

8.7 Improved loss function: Wasserstein GAN (WGAN)

8.7.1 Principle of Wasserstein GAN

8.7.2 WGAN code implementation

8.8 Deep convolutional confrontation network DCGAN

8.8.1 Transposed convolution of 1D vectors

8.8.2 2D transposed convolution

8.8.3 Implementation of convolutional confrontation network DCGAN

Chapter 2 Gradient descent method
The core task of deep learning is to train a function model through sample data, or to find an optimal function to
represent or describe these sample data. Solving the best function model comes down to a mathematical
optimization problem, more precisely, the problem of finding the extreme value of a certain loss function. In
deep learning, the gradient descent method is used to solve this extreme value problem or solve the model
parameters.

This chapter introduces the theoretical basis, algorithm principle and code implementation of the gradient
descent algorithm starting from the necessary conditions for the extreme value of the function, and introduces
different optimization strategies for updating the solution variables (parameters) in the gradient descent
method.

2.1 Necessary conditions for function extremum
The function obtains the Minimal value at a certain point : it means that there is a certain positive
number , so that for the interval each x satisfies . This is called the Minimal
value point of the function, and is called the Minimal value of the function.

The function obtains the maximal value at a certain point : it means that there is a certain positive
number , so that for the interval each x satisfies . is called the maximal
value point of the function, and is called the maximal value of the function.

The minimum value and maximum value are collectively referred to as extreme value, and the minimum value
point and maximum value point are collectively referred to as extreme value point.

If all x in the domain of the function satisfy , then is called the minimum point of the
function, and is called the minimum value of the function.

If all x in the domain of the function satisfy , then is called the maximum point of the
function, and is called the maximum value of the function.

That is, the minimum value is a minimum value of a global range, and the maximum value is a maximum value
of a global range. The minimum and maximum values are collectively referred to as Most Value, and the
minimum and maximum points are collectively referred to as Most Value Points.

Necessary conditions for function extremum: If is the extreme point of the function , and the
function is derivable at , then there must be , that is, the derivative value at the extreme point
must be 0 .

For example, the previous function obtains the minimum value at (of course it is also a
minimum value) and can be derived, so at its derivative value must be 0.

This proposition is easy to prove. If is the extreme point of the function , there is an interval
 that satisfies , so , while:

When x tends to from the left and right sides, is negative and positive respectively, and the numerator is
always positive.
When x tends to from the right, its limit value should be , When x tends to from the left, its limit value
should be , and this limit exists, so its value can only be 0.

af://n0
af://n4

According to the limit formula, a rule can also be found: if the derivative at is a positive number, it means that
the function f(x) is monotonically increasing around this point, that is, if , then , that is,

 increases as x increases. Or if is a positive number, then is also a positive number. For example,
the derivative of is , when x is greater than 0, the derivative is positive, therefore,
the function curve is monotonically increasing. Similarly, if the derivative at is positive, it means that the
function f(x) is monotonically decreasing around this point, that is, if , then , That is,

 becomes smaller as x increases. For example, when x is less than 0, the derivative of is
negative, so the function curve is monotonically decreasing, that is, if , instead .

For example, the function , let its derivative :

Two points with a derivative of 0 can be obtained. The change of this function and its
derivative function is shown in Figure 2-1:

Figure 2-1 , the function increases monotonically, , the function decreases monotonically

In the interval , is a positive number, so the function f(x) is monotonically increasing, and in the
interval , is a negative number, so the function f(x) is monotonically decreasing. In the interval

, is a positive number, so the function f(x) is monotonically increasing .

The following code draws the curve of this function and its derivative function, which can more intuitively reflect
the monotonous change and extreme point of the function.

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

x = np.arange(-3, 4, 0.01)

f_x = np.power(x,3)-3*x**2-9*x+2

df_x = 3*x**2-6*x-9

plt.plot(x,f_x)

plt.plot(x,df_x)

plt.xlabel('x axis label')

plt.ylabel('y axis label')

plt.legend(['f(x)', "df(x)"])

plt.axvline(x=0, color='k')

plt.axhline(y=0, color='k')

plt.show()

Figure 2-2 and the function curve of its derivative

Note that the above proposition only illustrates the necessary condition at the extreme point of the function, but
not the sufficient condition, that is to say, the derivative at a function does not mean that
must be an extreme point. For example, the derivative of at is also 0, but this point is
not the extreme point of the function. In fact, this is a monotonically increasing function, as shown in Figure 2-3.

Figure 2-3 Function curve of

Obviously, the necessary conditions for the extremum of the function can be extended to multivariate functions,
that is, for a multivariate function , if the function is at a certain point
obtains an extreme value and the gradient at this point exists (that is, all partial derivatives exist), then the
gradient at this point must be 0 (that is, each partial derivative value is is 0). Right now:

2.2 Gradient descent method (gradient descent)

x = np.arange(-3, 3, 0.01)

f_x = np.power(x,3)

plt.plot(x,f_x)

plt.xlabel('x axis label')

plt.ylabel('y axis label')

plt.axvline(x=0, color='k')

plt.axhline(y=0, color='k')

plt.show()

af://n33

For a one-variable function f(x), if there is a small change near a certain point x, then the change
 of f(x) can be expressed as follows Differential form of :

Therefore, near , if and have the same sign, then or is a positive
number, and if and have opposite signs, then or is a negative number.
If you take (where is a small positive number),then is a
negative number, that is, the value of will be smaller than . In other words, x moves along
the opposite direction of , and its function value is smaller than the original .

As shown in Figure 2.4, the function value of the function at is 2.45, and the
derivative value is 3.0, which is a positive number, pointing to the positive direction of the axis on the
domain of , that is, the axis, as shown by the long arrow in the figure.

Figure 2-4 , and move with the same sign, the function value increases,
otherwise, the function value decreases

Let , , move x along this (in the direction of the blue arrow in the
figure) to , the f(1.05) function value at the new obtained is 1.3025, which is
the y coordinate value of the blue point on the curve in the figure. Because and are in opposite
directions (one negative and one positive), this f(1.05) must be smaller than the original f(1.5).

As long as this process is repeated continuously, that is, moving x along the opposite direction () of its
derivative by a small increment can reach a new , and the function value

 of this new must be smaller than the previous function value .

As x continues to approach the x value of the minimum point, the derivative f'(x) is also close to 0 (because the
derivative of the function extreme point), and the increment of x movement is getting closer
and closer to 0.

This is the idea of gradient descent method, that is, starting from an initial x, the value of x is continuously
updated with the following formula:

For the current , moving along its negative derivative (gradient) direction (ie can make keep
getting smaller. Ideally, of minimum is reached, where . Then update iteratively, and the
value of will no longer change. As shown in Figure 2-5, is constantly updated iteratively, so that it is
constantly approaching the extreme point.

Figure 2-5 x moves along , the function value keeps decreasing

Of course, the pace of this movement (ie) cannot be too large, because according to the definition of
the derivative, the above approximate formula is only applicable near . If the moving pace is too large, the
optimal value of may be skipped, making the value of constantly oscillating back and forth. As shown in
Figure 2-6.

Figure 2-6 The magnitude of change is too large, the function value will oscillate

The gradient descent method is to find an approximate optimal solution. In order to avoid iterating, the
following methods can be used to check whether it is close enough to the optimal solution:

The absolute value of the derivative (gradient) is small enough.

The number of iterations has reached the preset maximum number of iterations.

The following is the code of the gradient descent method, where the parameter df is used to calculate the
derivative of a function , is the initial value of the variable, alpha is the learning rate, and iterations
represent The number of iterations, epsilon checks whether the value of df= is close to 0.

def gradient_descent(df,x,alpha=0.01, iterations = 100,epsilon = 1e-8):

 history=[x]

 for i in range(iterations):

 if abs(df(x))<epsilon:

 print("The gradient is small enough!")

 break

 x = x-alpha* df(x)

 history.append(x)

 return history

This gradient descent function saves all updated during the iteration process in a python list object history and
returns this object.

For the above function , its derivative . If you want the minimum
value of the function near , you can call this function gradient_descent():

Get the extreme point x=2.999999999256501 of . The points on the curve corresponding to x in the
iteration process can be drawn:

Figure 2-7 x gradually converges to the minimum point

Among them, the quiver function of matplotlib can use arrows to draw velocity vectors, and its function format
is:

Where X, Y are 1D or 2D arrays, indicating the position of the arrow, and U, V are the same 1D or 2D arrays,
indicating the speed (vector) of the arrow. For other parameters, please refer to the official documentation.

For multivariable functions, the principle of the gradient descent method is the same, but the gradient is used
instead of the derivative.

df = lambda x: 3*x**2-6*x-9

path = gradient_descent(df,1.,0.01,200)

print(path[-1])

The gradient is small enough!

 2.999999999256501

f = lambda x: np.power(x,3)-3*x**2-9*x+2

x = np.arange(-3, 4, 0.01)

y= f(x)

plt.plot(x,y)

path_x = np.asarray(path) #.reshape(-1,1)

path_y=f(path_x)

plt.quiver(path_x[:-1], path_y[:-1], path_x[1:]-path_x[:-1], path_y[1:]-path_y[:-1],

scale_units='xy', angles='xy', scale=1, color='k')

plt.scatter(path[-1],f(path[-1]))

plt.show()

quiver([X, Y], U, V, [C], **kw)

The following is the Beale's function of Wikipedia.

The global minimum of this function is . The function value can be calculated with the following python
code:

To draw this surface, first take some evenly distributed coordinate values on the x and y axes:

Then use the np.meshgrid() function to get the grid points (x, y) at their intersections according to the above
x_list and y_list, and calculate the function values corresponding to these grid coordinate points:

Finally, the plot_surface() function can be called to draw this surface:

The complete code is as follows:

f = lambda x, y: (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2

xmin, xmax, xstep = -4.5, 4.5, .2

ymin, ymax, ystep = -4.5, 4.5, .2

x_list = np.arange(xmin, xmax + xstep, xstep)

y_list = np.arange(ymin, ymax + ystep, ystep)

x, y = np.meshgrid(x_list, y_list)

z = f(x, y)

ax.plot_surface(x, y, z, norm=LogNorm(), rstride=1, cstride=1,

 edgecolor='none', alpha=.8, cmap=plt.cm.jet)

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.colors import LogNorm

import random

%matplotlib inline

f = lambda x, y: (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2

minima = np.array([3., .5])

minima_ = minima.reshape(-1, 1)

xmin, xmax, xstep = -4.5, 4.5, .2

ymin, ymax, ystep = -4.5, 4.5, .2

x_list = np.arange(xmin, xmax + xstep, xstep)

y_list = np.arange(ymin, ymax + ystep, ystep)

x, y = np.meshgrid(x_list, y_list)

z = f(x, y)

fig = plt.figure(figsize=(8, 5))

ax = plt.axes(projection='3d', elev=50, azim=-50)

ax.plot_surface(x, y, z, norm=LogNorm(), rstride=1, cstride=1,

Figure 2-8 Drawn f(x,y) surface

The partial derivative of with respect to is:

The gradient directions at these grid points can be plotted on a 2D coordinate plane using matplotlib's quiver
function.

 edgecolor='none', alpha=.8, cmap=plt.cm.jet)

ax.plot(*minima_, f(*minima_), 'r*', markersize=10)

ax.set_xlabel('x')

ax.set_ylabel('y')

ax.set_zlabel('z')

ax.set_xlim((xmin, xmax))

ax.set_ylim((ymin, ymax))

plt.show()

df_x = lambda x, y: 2*(1.5 - x + x*y)*(y-1) + 2*(2.25 - x + x*y**2)*(y**2-1) + 2*(2.625 - x

+ x*y**3)*(y**3-1)

df_y = lambda x, y: 2*(1.5 - x + x*y)*x + 2*(2.25 - x + x*y**2)*(2*x*y) + 2*(2.625 - x +

x*y**3)*(3*x*y**2)

dz_dx = df_x(x, y)

dz_dy = df_y(x, y)

fig, ax = plt.subplots(figsize=(10, 6))

ax.contour(x, y, z, levels=np.logspace(0, 5, 35), norm=LogNorm(), cmap=plt.cm.jet)

ax.quiver(x, y, x - dz_dx, y - dz_dy, alpha=.5)

ax.plot(*minima_, 'r*', markersize=18)

ax.set_xlabel('x')

ax.set_ylabel('y')

ax.set_xlim((xmin, xmax))

ax.set_ylim((ymin, ymax))

Figure 2-9. Domain coordinate contours and gradient directions at grid points of the isosurface of the function
f(x,y)

In order to directly use the previous gradient descent method code, x in the previous gradient descent method
code can be represented by a numpy vector, and

change into:

First combine the separated x and y coordinate arrays into one array:

You can define a gradient function df for this vectorized coordinate point x. The following code also gives the
implementation of the modified vectorized version of the gradient descent algorithm:

plt.show()

if abs(df(x))<epsilon:

if np.max(np.abs(df(x)))<epsilon:

print(x.shape)

print(y.shape)

x_ = np.vstack((x.reshape(1, -1) ,y.reshape(1, -1)))

print(x_.shape)

(46, 46)

 (46, 46)

 (2, 2116)

df = lambda x: np.array([2*(1.5 - x[0] + x[0]*x[1])*(x[1]-1) + 2*(2.25 - x[0] +

x[0]*x[1]**2)*(x[1]**2-1)

 + 2*(2.625 - x[0] + x[0]*x[1]**3)*(x[1]**3-1),

 2*(1.5 - x[0] + x[0]*x[1])*x[0] + 2*(2.25 - x[0] + x[0]*x[1]**2)*

(2*x[0]*x[1])

The following code starts from x0=(3., 4.) to solve the extreme point of this surface:

Gradient [25625.25 57519.] of initial point [3. 4.]
 Extreme points: [2.70735828 0.41689171]

Because the initial gradient value of x starts to be very large, the learning rate must take a small number (such
as 0.000005), otherwise it will cause shock or infinite value, and finally converge to [2.70735828 0.41689171] ,
But it is not the best point, you can see this situation more intuitively by drawing the change of x during the
iteration process.

 + 2*(2.625 - x[0] + x[0]*x[1]**3)*(3*x[0]*x[1]**2)])

def gradient_descent(df,x,alpha=0.01, iterations = 100,epsilon = 1e-8):

 history=[x]

 for i in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

 break

 x = x-alpha* df(x)

 history.append(x)

 return history

x0=np.array([3., 4.])

print("initial point",x0,"gradient",df(x0))

path = gradient_descent(df,x0,0.000005,300000)

print("Extreme point：",path[-1])

def plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax):

 fig, ax = plt.subplots(figsize=(10, 6))

 ax.contour(x, y, z, levels=np.logspace(0, 5, 35), norm=LogNorm(), cmap=plt.cm.jet)

 #ax.scatter(path[0],path[1]);

 ax.quiver(path[:-1,0], path[:-1,1], path[1:,0]-path[:-1,0], path[1:,1]-path[:-1,1],

scale_units='xy', angles='xy', scale=1, color='k')

 ax.plot(*minima_, 'r*', markersize=18)

 ax.set_xlabel('x')

 ax.set_ylabel('y')

 ax.set_xlim((xmin, xmax))

 ax.set_ylim((ymin, ymax))

path = np.asarray(path)

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)

Figure 2-10 During the iteration process, the gradient value becomes smaller and smaller, and the convergence
becomes slower and slower

During the iterative process, the gradient value becomes smaller and smaller, and the same learning rate makes
the update of very slow. Even after 100,000 iterations, it still fails to approach the optimal solution. A natural
approach is to use an adaptive learning rate, i.e. increase the learning rate when the gradient becomes small. As
an exercise, the reader can try to modify the gradient descent algorithm to get to the optimal solution better
and faster.

2.3 Parameter optimization strategy of gradient descent
method

The learning rate in the basic gradient descent algorithm is a fixed value, and the gradient size is constantly
changing during the iterative process. If the learning rate is too large, the variable to be solved will oscillate back
and forth. If the learning rate is too small, the convergence will be very slow or even stagnant. The initial learning
rate is moderate, but as the convergence approaches the optimal solution, its gradient is also close to 0, which
will also cause stagnation. Naturally, the learning rate should be adjusted as it gradually converges during the
iterative process, that is, a variable learning rate is used to update the variable x to be solved during the iterative
process.

In order to ensure that the optimal solution can be approached better and faster, many improvements to the
gradient descent method have been proposed. These improvements use a changing learning rate or strategy to
update the solution variables (also called parameters). The update strategies or methods for variables
(parameters) include: Momentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, Adam, AdaMax,
Nadam, AMSGrad, etc.

It should be noted that the function may be a multi-variable function, therefore, its variable can be a vector
composed of multiple values. Only some of the commonly used optimization strategies are described below.

2.3.1 Momentum momentum method

The gradient descent method uses the learning rate and the negative direction of the gradient, that is,
 to update each time, that is, to update the vector x depends entirely on the current

calculated gradient, and the Momentum momentum method updates the vector of not only considering the
current gradient, but also considering the last update vector, that is, the updated vector is considered to have

af://n105
af://n109

inertia. Assuming that is the vector used for update last time, the current updated vector is:

Update with this :

This vector used to update is called momentum. The momentum method regards the update vector as the
velocity of a moving object, and the velocity has inertia. Due to the combination of the previous update vector
and the current gradient, it alleviates the sharp changes in the gradient at different times, making the updated
vector smoother, that is, maintaining the inertia of the previous motion, so that where the gradient is small,
there is still a large motion. The speed will not overshoot due to the sudden increase of the gradient. This
method is like a ball with weight rolling downhill, maintaining a certain amount of inertia while looking for the
steepest descent path. Ordinary gradient descent only determines the speed of movement according to the
degree of steepness, just like rushing fast in steep places and hardly moving in flat places.

The initial value of is 0, which can be expressed in python code as:

That is, is a tensor with the same shape as with an initial value of 0. In the iterative process, is updated
first, and then the parameter of the function is updated:

The following is the gradient descent method based on the momentum method:

Use the gradient descent method of this momentum method to solve the above problem:

[2.96324633 0.49067782]

It can be seen that the solution of the momentum method is very close to the optimal solution. as the picture
shows.

v= np.zeros_like(x)

v = gamma*v+alpha* df(x)

x = x-v

def gradient_descent_momentum(df, x, alpha=0.01, gamma = 0.8, iterations = 100, epsilon = 1e-

6):

 history=[x]

 v= np.zeros_like(x) # momentum

 for i in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

 break

 v = gamma*v+alpha* df(x) # update momentum

 x = x-v # Update variables (parameters)

 history.append(x)

 return history

path = gradient_descent_momentum(df,x0,0.000005,0.8,300000)

print(path[-1])

path = np.asarray(path)

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)

Figure 2-11 The momentum method quickly converges to a near-optimal solution

2.3.2 Adagrad method

According to the variable update formula of the gradient descent method , what affects the
variable update is the product of the learning rate and the gradient , the gradient is too large or too
small and the learning rate is too large or too small will affect the convergence of the algorithm.

For a multivariate function, the magnitude of the partial derivatives for each variable can vary widely. For

example, the absolute values of the partial derivatives of a function of two variables at a

certain point may differ greatly.It is inappropriate to use the same learning rate for them. The
appropriate learning rate for one component is too large or too small for the other component, resulting in
shock and stagnation. That is, it is inappropriate to directly update with the following formula:

The Adagrad method can be translated as "adaptive (ada) gradient (grad)" from the noun, which divides each
gradient component by the historical cumulative value of the gradient component, so that the problem of
unbalanced gradient sizes of different components can be eliminated. For 2 components , if the
historical cumulative value of the respective components is calculated respectively, the update
formula of the 2 components is:

Use the notation to represent the partial derivative of the component in the t-th

iteration, the component gradient of all rounds from t'=1 to t'=t can be calculated as follows:

Divide by to update the component:

In order to prevent the divisor from being 0, a small positive number can be added to this denominator, so
that the parameter update formula of AdaGrad is:

af://n127

Compare the basic parameter update formula:

It can be seen that the AdaGrad method eliminates the unbalanced problem of component gradient sizes. The
parameter update formula of AdaGrad can be written in vector form:

The accumulated can be recorded with the variable gl with an initial value of 0. In each round of iteration, the
python code for AdaGrad parameter update is as follows:

The main advantage of the AdaGrad method is that it eliminates the influence of different gradient values, so
that the learning rate can be set to a fixed value without continuously adjusting the learning rate in the iterative
process. The general learning rate is set to 0.01. The main disadvantage of the AdaGrad method is that with the
iterative process, the cumulative sum will become larger and larger, because each of them is a
positive number . This can lead to slow learning, or even a standstill. Also, making each component gradient
have a consistent pace may not be realistic and can divert the direction of progress from the direction of the
optimal solution.

The code of the gradient descent method based on the Adagrad parameter update method is as follows:

For the above problem, perform the gradient descent algorithm:

[-0.69240717 1.76233766]

It can be seen that due to the equalization of the component gradients, the forward direction of the variable
update deviates from the optimal solution method, and converges to another local optimal solution.

gl += df(x)**2

x = x-alpha* df(x)/(sqrt(gl)+epsilon)

def gradient_descent_Adagrad(df,x,alpha=0.01,iterations = 100,epsilon = 1e-8):

 history=[x]

 #v= np.zeros_like(x)

 gl = np.ones_like(x)

 for i in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

 break

 grad = df(x)

 gl += grad**2

 x = x-alpha* grad/(np.sqrt(gl)+epsilon)

 history.append(x)

 return history

path = gradient_descent_Adagrad(df,x0,0.1,300000,1e-8)

print(path[-1])

path = np.asarray(path)

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)

Figure 2-12 Adagrad method converges to another local minimum

2.3.3 Adadelta method

Reviewing the basic parameter update method, use to represent the update vector of the parameter:

The update vector of the AdaGrad method is:

Here is the historical sum of squares of . With the iterative process, this value is getting bigger
and bigger, resulting in is getting smaller and smaller, so the convergence is getting slower and slower. The
solution is to replace with the sum of mean squares instead of the sum of squares. This
can be calculated using the moving average method, that is, to make an average of the last average value and
the current value:

The Adadelta method goes a step further and uses such a moving average method for the update vector to
make the change of the update vector smoother.

The final update vector is:

Use to represent and , the update vector can be expressed
as:

So the parameter update formula is:

af://n154

The python code for the Adadelta method is as follows:

The decay rate parameter of the Adadelta method is usually set to 0.9, and the initial value of
 is also 0. The code of the gradient descent method based on the Adadelta parameter

update method is as follows:

It can be seen that the Adadelta method can also converge to a close to the optimal solution.

Eg = rho*Eg+(1-rho)*(grad**2) # Update the cumulative sum of squares of the

gradient

delta = np.sqrt((Edelta+epsilon)/(Eg+epsilon))*grad # calculate update vector

x = x - alpha* delta

Edelta = rho*Edelta+(1-rho)*(delta**2) # Cumulative update of update vector

def gradient_descent_Adadelta(df,x,alpha = 0.1,rho=0.9,iterations = 100,epsilon = 1e-8):

 history=[x]

 Eg = np.ones_like(x)

 Edelta = np.ones_like(x)

 for i in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

 break

 grad = df(x)

 Eg = rho*Eg+(1-rho)*(grad**2)

 delta = np.sqrt((Edelta+epsilon)/(Eg+epsilon))*grad

 x = x- alpha*delta

 Edelta = rho*Edelta+(1-rho)*(delta**2)

 history.append(x)

 return history

path = gradient_descent_Adadelta(df,x0,1.0,0.9,300000,1e-8)

print(path[-1])

path = np.asarray(path)

[2.9386002 0.45044889]

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)

Figure 2-13 Adadelta method can also converge to a near optimal solution

2.3.4 RMSprop method

Similar to the momentum method, RMSprop uses the following formulas to update the momentum and
parameters:

The idea is to divide each value of the gradient by the length (the absolute value of the value), that is, convert it
into a unit length, so that the parameter x is always updated with a fixed step size . In order to calculate the
length of each component of the gradient, RMSprop is similar to the momentum method to calculate the square
value of the moving average length of the gradient value, that is, .

The python code for updating model parameters by the RMSprop method is as follows:

The code of the gradient descent method based on the RMSprop parameter update method is as follows:

v= np.ones_like(x)

#...

grad = df(x)

v = beta*v+(1-beta)* grad**2

x = x-alpha*(1/(np.sqrt(v)+epsilon))*grad

af://n178

For the above problem, perform the gradient descent algorithm:

The results for the model parameters are not good enough, you can increase the number of iterations:

It can be seen that the basic convergence is close to the optimal solution, as shown in Figure 2-14:

def gradient_descent_RMSprop(df,x,alpha=0.01,beta = 0.9, iterations = 100,epsilon = 1e-8):

 history=[x]

 v= np.ones_like(x)

 for i in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

 break

 grad = df(x)

 v = beta*v+(1-beta)*grad**2

 x = x-alpha*grad/(np.sqrt(v)+epsilon)

 history.append(x)

 return history

path = gradient_descent_RMSprop(df,x0,0.000005,0.99999999999,300000,1e-8)

print(path[-1])

path = np.asarray(path)

[2.70162562 0.41500366]

path = gradient_descent_RMSprop(df,x0,0.000005,0.99999999999,900000,1e-8)

print(path[-1])

path = np.asarray(path)

[2.9082809 0.47616156]

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)

Figure 2-14 The RMSprop method can also basically converge

2.3.5 Adam method

In addition to storing an exponentially decaying cumulative mean of the squares of past gradients like the
RMSprop method, it also stores a cumulative mean of the gradients like the momentum method. The
momentum method can be seen as a ball running down a slope, but the Adam method behaves like a ball with
friction and is therefore better suited for flat minima. Use to represent the moving average of past
gradients and gradient squares:

They are equivalent to the first-order and second-order momentum of the gradient, because their initial value is
0, Adam's author observed: when the decay rate is small, such as is close to 1, they are biased towards
zero, Especially in the early stages of an iteration. To correct this problem, the authors used the following
correction formula:

Update based on this:

#https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization-6be9a291375c

def gradient_descent_Adam(df,x,alpha=0.01,beta_1 = 0.9,beta_2 = 0.999, iterations =

100,epsilon = 1e-8):

 history=[x]

 m = np.zeros_like(x)

 v = np.zeros_like(x)

 for t in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

af://n196

For the above problem, execute the gradient descent algorithm gradient_descent_Adam:

Figure 2-15 The Adam method can also converge to a near optimal solution

 break

 grad = df(x)

 m = beta_1*m+(1-beta_1)*grad

 v = beta_2*v+(1-beta_2)*grad**2

 #m_1 = m/(1-beta_1)

 #v_1 = v/(1-beta_2)

 t = t+1

 if True:

 m_1 = m/(1-np.power(beta_1, t+1))

 v_1 = v/(1-np.power(beta_2, t+1))

 else:

 m_1 = m / (1 - np.power(beta_1, t)) + (1 - beta_1) * grad / (1 - np.power(beta_1,

t))

 v_1 = v / (1 - np.power(beta_2, t))

 x = x-alpha*m_1/(np.sqrt(v_1)+epsilon)

 #print(x)

 history.append(x)

 return history

path = gradient_descent_Adam(df,x0,0.001,0.9,0.8,100000,1e-8)

#path = gradient_descent_Adam(df,x0,0.000005,0.9,0.9999,300000,1e-8)

print(path[-1])

path = np.asarray(path)

#plt.plot(path)

[2.99999653 0.50000329]

plot_path(path,x,y,z,minima_,xmin, xmax,ymin, ymax)

af://n210

2.4 Gradient verification

2.4.1 Comparing numerical and analytical gradients

When writing the code of the gradient descent algorithm, the most likely mistake is that the gradient calculation
is incorrect, which leads to the inability of the algorithm to converge. Therefore, in addition to adjusting the
learning rate, you should check whether the gradient calculation is correct. To this end, according to the
definition of the derivative, that is, the derivative is the rate of change of the function, the derivative (gradient) of
the function at a point can be estimated by the following formula:

That is, use the division on the right side of the formula to approximate the derivative (gradient) of at . If
is small enough, the derivative (gradient) of this value should be the same as the analytical derivative (gradient)
on the left) are close enough.

Therefore, before training the model with the gradient descent method, the numerically calculated gradient and
the analytical gradient can be compared to verify that the analytical gradient is calculated correctly.

For example, for the previous binary function , in the gradient descent method, the
function is at a point The function values and analytical gradients of are calculated by the following
code.

The numerical gradient at the point can be calculated as follows:

The following code snippet compares the errors of the analytical and numerical gradients at the point
:

It can be seen that as long as the small increment eps of calculating the numerical gradient is small enough, this
numerical gradient is close enough to the analytical gradient, and this is the definition of the derivative: the
numerical gradient can be close enough to the analytical gradient. If it is found that the error of the two is
relatively large or large, it means that there may be a problem with the calculation of the analytical gradient or
function value or numerical gradient. Most of the errors are problems with the calculation of the analytical
gradient or function value.

f = lambda x: (1/16)*x[0]**2+9*x[1]**2

df = lambda x: np.array(((1/8)*x[0],18*x[1]))

df_approx = lambda x,eps:((f([x[0]+eps,x[1]])-f([x[0]-eps,x[1]]))/(2*eps),(

f([x[0],x[1]+eps])-f([x[0],x[1]-eps]))/(2*eps))

x = [2.,3.]

eps = 1e-8

grad = df(x)

grad_approx = df_approx(x,eps)

print(grad)

print(grad_approx)

print(abs(grad-grad_approx))

[0.25 54.]

 (0.2500001983207767, 54.00000020472362)

 [1.98320777e-07 2.04723619e-07]

af://n210
af://n211

Before using the gradient descent method to solve the optimal solution, the gradient verification method should
be used to ensure that the calculation of the analysis gradient and function value is correct. On this basis, adjust
the hyperparameters of the gradient descent method such as learning rate or momentum parameters.

2.4.2 Generic numerical gradients

Machine learning includes the hypothetical function in deep learning that contains a lot of parameters, and a
general numerical gradient calculation function can be written:

The parameter f accepted by this function indicates the function to calculate the gradient, and params indicates
the parameters of the function, because f may have multiple parameters, and params indicates a set of these
multiple parameters (such as python's list, tuple, etc. object). To be more general, assume that each element x of
params is a multidimensional array containing multiple elements.

In the inner loop, for the element pointed to by each subscript idx of x, add a small increment
 and respectively and calculate the corresponding The function value f(), and then

use the differential approximation formula of the derivative to calculate the partial derivative corresponding to
this and assign it to . Note: After each modification of , it must be restored to the
original value, otherwise it will affect the calculation of other partial derivatives and affect the value of params
after exiting this function.

You can use this general numerical gradient computation function to compute the numerical gradient of the
previous function:

def numerical_gradient(f, params, eps = 1e-6):

 numerical_grads = []

 for x in params:

 # x may be a multidimensional array,

 # for each element, calculate its numerical partial derivative

 grad = np.zeros(x.shape)

 it = np. nditer(x, flags=['multi_index'], op_flags=['readwrite']) #

 while not it. finished:

 idx = it.multi_index

 old_value = x[idx]

 x[idx] = old_value + eps # x[idx]+eps

 fx = f()

 x[idx] = old_value - eps # x[idx] - eps

 fx_ = f()

 grad[idx] = (fx - fx_) / (2*eps)

 x[idx] = old_value # Note: Be sure to restore the weight parameter to its

original value.

 it.iternext() # Loop through the next element of x

 numerical_grads.append(grad)

 return numerical_grads

x = np.array([2.,3.])

param = np.array(x) # The parameter param of numerical_gradient must be a numpy array

numerical_grads = numerical_gradient(lambda:f(param),[param],1e-6)

print(numerical_grads[0])

[0.25 54.00000001]

af://n225

Note that the first parameter f of numerical_gradient must point to a function object rather than the result of a
function call. It is wrong to write lambda:f(param) above as f(param) .

For a function f that contains some parameters such as param, usually the above lambda expression or the
following wrapper function fun can be used to return a function object that performs calculations on the
parameter param.

In the following chapters, this general numerical gradient calculation function numerical_gradient() will be used
to calculate the numerical gradient of the model function. This function and others are included in the book's
source code file util.py.

2.5 Separation gradient descent algorithm and parameter
optimization strategy

2.5.1 Parameter optimizer

The optimization strategy of variables (parameters) is hard-coded in the gradient descent algorithm. The
gradient descent method of different optimization strategies has the same framework except for the parameter
update. In order to improve code reusability and flexibility, parameter optimization strategies can be classified
from gradient descent algorithms.

A class representing a parameter optimization strategy can be defined:

params is a list of variables (parameters), and step() is used to update these parameters params according to
the gradient grads. For example, the parameter optimizer class SGD that defines the parameter optimization
strategy using the basic gradient descent method can be derived on the basis of this class:

def fun():

 return f(param)

numerical_grads = numerical_gradient(fun,[param],1e-6)

print(numerical_grads[0])

[0.25 54.00000001]

class Optimizator:

 def __init__(self,params):

 self.params = params

 def step(self,grads):

 pass

 def parameters(self):

 return self.params

class SGD(Optimizator):

 def __init__(self,params,learning_rate):

 super().__init__(params)

 self.lr = learning_rate

 def step(self,grads):

 for i in range(len(self.params)):

 self.params[i] -= self.lr*grads[i]

 return self.params

af://n238
af://n239

Similarly, other parameter optimizers can be defined, such as SGD_Momentum of the momentum method:

2.5.2 Gradient descent method accepting parameter optimizer

As long as the gradient descent algorithm accepts the parameter optimizer that updates the parameters, it can
update the parameters according to the optimization strategy of the optimizer:

Looking at a simple convex function surface,

This is a bowl-shaped surface, as shown in Figure 2-16. Its minimum value is at the bottom of the bowl, that is,
(0,0) is the minimum value point of the entire function, and the minimum value is 0.

Figure 2-16 Function surface

class SGD_Momentum(Optimizator):

 def __init__(self,params,learning_rate,gamma):

 super().__init__(params)

 self.lr = learning_rate

 self.gamma= gamma

 self.v = []

 for param in params:

 self.v.append(np.zeros_like(param))

 def step(self,grads):

 for i in range(len(self.params)):

 self.v[i] = self.gamma*self.v[i]+self.lr* grads[i]

 self.params[i] -= self.v[i]

 return self.params

def gradient_descent_(df,optimizator,iterations,epsilon = 1e-8):

 x, = optimizator.parameters()

 x = x.copy()

 history=[x]

 for i in range(iterations):

 if np.max(np.abs(df(x)))<epsilon:

 print("The gradient is small enough!")

 break

 grad = df(x)

 x, = optimizator.step([grad])

 x = x.copy()

 history.append(x)

 return history

af://n247

To this function, apply the SGD parameter optimizer described above:

Approaching the optimal solution, switch to the SGD_Momentum optimizer:

It also better approximates the optimal solution.

df = lambda x: np.array(((1/8)*x[0],18*x[1]))

x0=np.array([-2.4, 0.2])

optimizator = SGD([x0],0.1)

path = gradient_descent_(df,optimizator,100)

print(path[-1])

path = np.asarray(path)

path = path.transpose()

 [-8.26638332e-06 2.46046384e-98]

x0=np.array([-2.4, 0.2])

optimizator = SGD_Momentum([x0],0.1,0.8)

path = gradient_descent_(df,optimizator,1000)

print(path[-1])

path = np.asarray(path)

path = path.transpose()

 The gradient is small enough!

 [-1.49829905e-08 -4.74284398e-10]

	Brief introduction
	Preface
	Chapter 2 Gradient descent method
	2.1 Necessary conditions for function extremum
	2.2 Gradient descent method (gradient descent)
	2.3 Parameter optimization strategy of gradient descent method
	2.3.1 Momentum momentum method
	2.3.2 Adagrad method
	2.3.3 Adadelta method
	2.3.4 RMSprop method
	2.3.5 Adam method

	2.4 Gradient verification
	2.4.1 Comparing numerical and analytical gradients
	2.4.2 Generic numerical gradients
	2.5 Separation gradient descent algorithm and parameter optimization strategy
	2.5.1 Parameter optimizer
	2.5.2 Gradient descent method accepting parameter optimizer

